
www.manaraa.com

RankSQL: Supporting Ranking Queries in Relational Database
Management Systems∗

Chengkai Li1 Mohamed A. Soliman2 Kevin Chen-Chuan Chang1 Ihab F. Ilyas2

1Department of Computer Science, University of Illinois at Urbana-Champaign
cli@uiuc.edu, kcchang@cs.uiuc.edu

2School of Computer Science, University of Waterloo
m2ali@.uwaterloo.ca, ilyas@uwaterloo.ca

1 Introduction
Ranking queries (or top-k queries) are dominant in many
emerging applications, e.g., similarity queries in multime-
dia databases, searching Web databases, middleware, and
data mining. The increasing importance of top-k queries
warrants an efficient support of ranking in the relational
database management system (RDBMS) and has recently
gained the attention of the research community. Top-k
queries aim at providing only the top k query results, ac-
cording to a user-specified ranking function, which in many
cases is an aggregate of multiple criteria. The following is
an example top-k query.

Example 1: This is a trip planning query in PostgreSQL
syntax. The user wants to stay in a hotel, have lunch in
an Italian restaurant (condition c1: r.cuisine=Italian), and
walk to a museum after lunch; the hotel and the restaurant
should cost less than $100 (c2: h.price+r.price < 100);
the museum and the restaurant should be in the same city
area (c3: r.area=m.area). Results qualifying these con-
ditions are ranked by a scoring function that sums up the
numeric scores of several ranking “predicates”– p1: cheap

(h.price) for a low hotel price; p2: close (h.addr, r.addr)
for a close distance between the hotel and the restaurant;
and p3: related (m.collection, “dinosaur”) for matching
user’s interests with the museum’s collections.

SELECT ∗

FROM Hotel h, Restaurant r, Museum m

WHERE c1 AND c2 AND c3

∗This material is based upon work partially supported by NSF Grants
IIS-0133199, IIS-0313260, and a 2004 IBM Faculty Award. Any opin-
ions, findings, and conclusions or recommendations expressed in this pub-
lication are those of the author(s) and do not necessarily reflect the views
of the funding agencies.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

ORDER BY p1 + p2 + p3

LIMIT k

Current RDBMSs can only execute the above query in
the following way: (1) exhaust the input tables and materi-
alize the whole join results; (2) evaluate the three predicates
p1, p2, and p3 on each join result; (3) sort the join results
by p1 + p2 + p3; and (4) report the top k results. Such
a naı̈ve materialize-then-sort scheme can be prohibitively
expensive. Since the user is only interested in the top k re-
sults instead of a total order, the full materialization is an
overkill and introduces unnecessary overhead of fully scan-
ning and joining the three inputs, which can be arbitrar-
ily large. Moreover, all the ranking predicates have to be
evaluated against every results of the full materialization.
However, the ranking predicates, much like their boolean
counterparts, can be expensive as they can be user-defined
or built-in functions that require accessing online sources
(e.g., evaluating p1 by a Web hotel database), comparing
geographical data (e.g., p2), information retrieval style op-
eration (e.g., p3), etc.

In RankSQL, we aim at providing a seamless support of
top-k queries as a first-class query type and integrating this
type of queries in the existing SQL query engines. Our sys-
tem achieves orders of magnitude performance improve-
ments when compared with traditional query processing
techniques. This effort addresses the significant research
challenge of making RDBMSs rank-aware, a fundamental
notion that is missing in current database systems design.
In general, supporting ranking imposes significant impacts
on the whole system, including the underlying data model
and algebra, the query operators, and the optimization tech-
niques. In this demonstration, we show how to address
these challenges in the RankSQL prototype.

New techniques: As the foundation, we extend rela-
tional algebra to be “rank-relational” algebra [3], to capture
ranking as a first-class construct. We realize the algebra
by an efficient query execution model [3] and new phys-
ical rank-aware operators [1, 2] in which “rank-relations”
are processed incrementally. To enable rank-aware query
optimization for constructing efficient ranking query plans,
we propose a two-dimensional plan enumeration approach

1342

www.manaraa.com

Figure 1: Ranking principle.

and a sampling-based cost estimation method [3] to address
the key challenges in integrating the parallel dimensions of
ranking and boolean filtering (e.g., join order selection).

Contributions: To the best of our knowledge,
RankSQL is the first RDBMS that fully integrates ranking
support as a first-class functionality. In contrast, most re-
lated works are in the middleware scenario, or in RDBMS
in a “piecemeal” fashion, e.g., focusing on specific opera-
tor or specific types of queries, or sitting outside the core
of query engine. Hence, top-k queries are not treated as a
first-class query type, losing the advantages of integrating
top-k operations with other relational operations.

2 Overview of RankSQL
The RankSQL prototype is built upon the open source
database system PostgreSQL. In this section we present the
algebraic foundation and the novel techniques developed
for various system components.

2.1 The Foundation: Rank-Relational Algebra

As motivated by Section 1, essential support of ranking
consists of two requirements:

1. Splitting: Ranking should be evaluated in stages, pred-
icate by predicate– instead of monolithic.

2. Interleaving: Ranking should be interleaved with
other operators– instead of always after filtering (selec-
tions and joins).

Our rank-relational algebra incorporates “rank” as an es-
sential concept according to these requirements. We ex-
tend the semantics of relations to be rank-aware by defin-
ing rank-relation as a relation with its tuples scored and
ordered according to their maximal-possible scores (upper-
bound) with respect to the set of evaluated ranking predi-
cates. As the key insight, our ranking principle [3] indicates
that given two tuples t1 and t2, if the upper-bound of t1 is
higher than that of t2, then t1 must be further processed if
we necessarily further process t2 for query answering (refer
to Figure 1). Therefore the order of tuples based on their
upper-bound scores is consistent with their “desired” order
of further processing, as the more promising tuples are pro-
cessed earlier, toward retrieving top-k results efficiently.

The rank-relation by the above extension essentially
possesses two logical properties: (1) membership as de-
fined by traditional boolean filtering operations (selection
and join), and (2) order induced by evaluated predicates.
Therefore we extend the relational-algebra operators for
manipulating these two properties of rank-relations.

We first introduce a new operator, rank (µ), that evalu-
ates an additional predicate p upon a rank-relation ordered
by evaluated predicate set P , and produces a new order by
P ∪ {p}. The µ operator enables us to evaluate ranking
predicates one at a time– thus ranking is effectively split
and interleaved with other operations, achieving the afore-
mentioned requirements.

We then extend the original semantics of existing op-
erators (π, σ,∪,∩,−, ./) with rank-awareness, and thus
enable the interaction between the new µ and traditional
boolean operations. For example, rank-join performs the
normal boolean join operation, and at the same time out-
put tuples in the “aggregate” order of the operands– Such
aggregate order is induced by all the evaluated predicates
from both operands.

In the extended rank-relation model and algebra, as
the dual logical properties dictate, algebraic equivalence
should result not only in the same membership but also in
the same order. By definition of our algebra, we can as-
sert many equivalence laws. These new algebraic laws lay
the foundation of optimizing ranking queries as they define
equivalent plans in the search space of query optimizers.

2.2 The RankSQL Execution Engine

To realize the rank-relational algebra, we extend the com-
mon execution model to handle ranking query plans [3],
with two properties: (1) operators incrementally output
rank-relations, i.e., tuple streams pass through operators in
the order of maximal-possible scores according to our rank-
ing principle; and (2) the query has an explicitly requested
result size, k. The execution stops when k results are re-
ported or no more results are available.

The implementation of µ utilizes the MPro algo-
rithm [1]. For rank-join, we adopt the HRJN and the
NRJN physical rank-join operators [2]. We also imple-
ment rank-scan for accessing a base table in the order of
a ranking predicate p when there exists a B+tree index on
p. Such an index can be available when p is some attribute,
expression, or function, as all are supported in PostgreSQL.
Discussions on implementing new algorithms for other op-
erators such as ∩ can be found in [3].

The incremental nature of such ranking query plans en-
ables returning top results progressively upon user requests.
Therefore, the execution cost is proportional to k, in con-
trast to the blocking materialize-then-sort scheme which
can only report the first result after all results (much more
than k in general) are produced and sorted.

2.3 The RankSQL Query Optimizer

The rank-relational algebra and the new implementation
of physical operators enable an extended plan space with
plans that cannot be expressed traditionally. For instance,
for the query in Example 1, traditional optimizers only al-
low materialize-then-sort plans (e.g., Figure 2(a)). In con-
trast, rank-relational algebra enables equivalent plans by al-
gebraic laws (e.g., Figure 2(b)), which realizes the splitting

1343

www.manaraa.com

σc1

idxScanarea(R)

seqScan(H)

./c2
<Nested-Loop Join>

Sortp1+p2+p3

./c3
<Sort-Merge Join>

idxScanarea(M)

�� @@

�� @@

µp1

<idxScanp1
(H)>

σc1

seqScan(R)

./c2

<NRJN>

µp2
µp3

seqScan(M)

./c3

<HRJN>

�� @@

�� @@

(a) A traditional plan. (b) A ranking plan.

Figure 2: Two alternative plans for Example 1.

and interleaving requirements and may achieve significant
improvements in performance.

To fully incorporate the new algebra into a cost-based
query optimizer, we must address the significant impact of
the extended plan space on plan enumeration and costing
for effective pruning.

Plan Enumerator: We take a principled way to ex-
tend System-R bottom-up dynamic programming (DP) ap-
proach of plan enumeration by treating ranking predicates
as another dimension of enumeration in addition to boolean
predicates, based on the insight that ranking (order) rela-
tionship is another logical property, parallel to member-
ship, as explained in Section 2.1. In a ranking query plan,
the predicate set of a subplan, i.e., the µ operators in a sub-
plan, determines the order, just like how join conditions (to-
gether with other operations) determine the membership.
Moreover, for the same logical expression, the optimizer
must be able to select the most efficient plan among var-
ious plans that schedule and interleave µ operators differ-
ently, just like it must be able to select the best join order.

Cost Estimator Using Sampling: A key ingredient of
the accuracy of a cost model is cardinality estimation of
intermediate results. Cardinality estimation is much more
difficult in ranking query plans than in traditional plans. In
conventional query plans, the input size of an operator is in-
dependent from the operator itself and depends only on the
input subplans. In ranking query plans, however, an oper-
ator consumes only partial input, therefore the actual input
size depends on the operator itself and how the operator
decides that it has obtained “enough” information from the
inputs to generate “enough” outputs. This imposes a big
challenge to System-R style optimizers that build subplans
in bottom-up fashion, because the input sizes consumed by
operators depend on the location of that subplan in the com-
plete plan, which is unavailable during enumeration. We
propose a sampling-based cardinality estimation method to
address this challenge. Further details can be found in [3].

3 Demonstration
The RankSQL system is implemented in PostgreSQL
7.4.3. In addition to the core query engine, we build a suite
of useful tools for system builders to explore the process of
query optimization and execution in our system. We also
develop a Java GUI with JDBC connection to demonstrate

Figure 3: The architecture of RankSQL.

<SEQSCAN nParamExec="0" scanrelid="1">
<targetlist>
<TARGETENTRY>

<RESDOM resno="1" restype="1043" restypmod="84"
resname="name" ressortgroupref="0"
resorigtbl="34596" resorigcol="1"
resjunk="false"/>

<VAR varno="1" varattno="1" vartype="1043"
vartypmod="84" varlevelsup="0"
varnoold="1" varoattno="1"/>

</TARGETENTRY>
</targetlist>

</SEQSCAN>

Figure 4: A sample plan file.

the system and tools, showing how RankSQL can improve
query performance by orders of magnitude. We first in-
troduce the tools in Section 3.1, and then we describe the
demonstration scenario in Section 3.2.

3.1 The RankSQL Tools

Figure 3 illustrates the architecture of RankSQL tools, in-
cluding Plan Builder, Enumerator Visualizer, and Execu-
tion Monitor. The tools are convenient for system builders
to understand, to debug, and to improve various compo-
nents of a query engine. Therefore, their usefulness goes
beyond demonstrating and visualizing our prototype. We
briefly introduce theses new tools below.

The Plan Builder directly constructs a physical execu-
tion plan (bypassing the query optimizer) from a plan file
in XML format. For example, Figure 4 shows a simple
plan file that scans a table with ID 34596 in the catalog and
returns tuples with the projected attribute name. The sys-
tem builder provides a drag-and-drop GUI for editing the
plan file visually, as shown in Figure 5(a). With this tool,
system developers can experiment with plans that are not
chosen by the query optimizer. In addition, it is useful in
evaluating new query algorithms that are not yet incorpo-
rated in the optimizer’s enumerator or cost-model.

The Enumerator Visualizer displays the information
(the estimated cost, better plans with the same logical prop-
erty, etc.) of every enumerated sub-plans including the
pruned ones. With it, system developers can identify the
reason of pruning a plan and figure out why and how the fi-
nal execution plan is chosen. Moreover, this tool enables
users to control the enumeration procedure by stepping
through the enumeration level-by-level (e.g., sub-plans for

1344

www.manaraa.com

3 2

4

1
(a) The Plan Builder. (b) The RankSQL GUI.

Figure 5: Demonstration scenario.

n table join, then sub-plans for n + 1 table join) and man-
ually changing the optimizer’s choice by resurrecting some
pruned sub-plan and pruning the chosen sub-plan.

The Execution Monitor visualizes the execution of a
physical plan, by showing with animation the flow of tu-
ples, the size of intermediate results and internal data struc-
tures for each operator, and the execution time. It also dis-
plays the estimated cardinality information of every opera-
tors in a sub-plan.

3.2 Demonstration Scenario

The screenshot of our GUI is in Figure 5(b). It divides the
window into query (area 1), enumerator (area 2) , plan (area
3), and results (area 4). We will demonstrate RankSQL
with various data sets and queries. We will show that the
new ranking query plans improve the performances by or-
ders of magnitude when compared with traditional plans.
In this section, we show one simple example of answer-
ing the following top-k query, which joins two tables (each
with 1 million tuples) on jc and retrieves the top 10 results
according to the summation score of 4 ranking predicates.

SELECT A.id as id1, B.id as id2
FROM A, B
WHERE A.jc=B.jc
ORDER BY p1(A.a1)+p2(A.a2)+p3(B.b1)+p4(B.b2)
LIMIT 10

The scenario of the demonstration is as follows:
(1) The user connects to the database server from the

menu option ”Server” and types or loads a query in area 1.
(2) The user starts the two-dimensional enumerator and

the enumerator visualizer displays the enumerated plans in-
cluding the final execution plan in area 2. For example, for
the logical property of “AB p1 p2 p3 p4” (meaning A and
B are joined and p1 to p4 are evaluated), several physical
plans are enumerated and shown under the node “AB p1 p2
p3 p4”. The one with ID 69 is chosen as the execution plan.
The input nodes are shown under each plan node. Clicking
on an input node (e.g., “41 Rank”) moves the focus to the
corresponding plan node (with ID 41 in this case).

The user can optionally step-execute the enumerator.
At an intermediate level, the user inspects the enumerated

plans and manually changes the optimizer’s choices. This
process goes on until the final execution plan is chosen.

(3) Summary information about the selected (sub-)plan
in area 2 is shown on the bottom right panel, including the
ID, type, estimated total and startup cost, which other plan
prunes this plan, and real execution time. In addition, a plan
tree is shown in area 3 to illustrate its structure. For exam-
ple, the root of plan 69 is a HRJN node with two inputs,
each of which is a Rank node above RankScan.

(4) The user executes the plan tree in area 3, and the ex-
ecution monitor animates the execution process. A red bar
(closer to the node itself) and a blue bar (closer to its upper
node) are shown on the outgoing edge of each node. The
length of the red bar indicates how many tuples are pro-
duced by the node, and the length of the blue bar indicates
how many of the produced tuples are output to its upper
operator (thus their length difference illustrates the number
of tuples that are currently in the output buffer of the node).
For example, the root operator of plan 69 outputs 10 tuples
when execution finishes and produces 7953 joined tuples
for producing these 10 tuples.

(5) The user can also use the plan builder to create or
load a plan file, upon which the execution plan is directly
constructed without the optimizer. The resulting plan is
shown and executed in area 3 as described above.

(6) A table of the query results is shown in area 4.

Acknowledgements: We thank Jonathan Bryak for his
participation in building the enumerator and the plan
builder.

References
[1] K. C.-C. Chang and S. Hwang. Minimal probing:

Supporting expensive predicates for top-k queries. In
SIGMOD, pages 346–357, 2002.

[2] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join quereis in relational databases. In VLDB, pages
754–765, 2003.

[3] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL:
Query algebra and optimization for relational top-k queries.
In SIGMOD, pages 131–142, 2005.

1345

